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Chapter 1

Fundamentals of Quantum
Mechanics

The mechanical description of a system state in Hamiltonian mechanics is (q, p) ∈ phase space,
where p = ∂L/∂q is the canonical momentum. The observables are functions of (q, p). Hamil-
tonian equations describe the evolution of the state

ṗ = −∂H
∂q

, q̇ =
∂H

∂p
. (F.0.1)

This description needed to be changed to accommodate experimental results. For example,
in Einstein’s space-time deformation and geodesic motion, we describe the state by a tensor
gµν . In classical field theory, we use electric field, magnetic field, etc., to describe the states.

F.1 States in Quantum Mechanics

In quantum mechanics, we use a ket vector denoted by |α⟩ in a C-Hilbert space denoted by
H to describe a state.

Definition 1. The inner product in a vector space V , (−,−) : V × V → C, satisfies:

• (u, v)∗ = (v, u), for all u, v ∈ V .

• (u, c1v1 + c2v2) = c1(u, v1) + c2(u, v2), for all u, v ∈ V and c1, c2 ∈ C.

• (u, u) ≥ 0, for all u ∈ V , unless u = 0.

Notice that C |α⟩, C ̸= 0, and |α⟩ represent the same physical state. However, C = |C|eiθ
does not imply that the phase has any physical meaning; see more details later on Berry
phase.

F.2 Observables in Quantum Mechanics

The observables are represented by (Hermitian) operators A : H→ H. The eigenvalues of the
operators are the physical quantities associated with the eigenvectors. For example, the spin
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8 CHAPTER 1. FUNDAMENTALS OF QUANTUM MECHANICS

operators Sx, Sy, Sz (Si =
ℏ
2σi in Pauli theory). The operator in the z-direction satisfies

Sz |+z⟩ =
ℏ
2
|+z⟩ , Sz |−z⟩ = −

ℏ
2
|−z⟩ . (F.2.1)

Remark 1. Let X,Y, Z : H→ H be operators. Then:

• X = Y if X |α⟩ = Y |α⟩ for all |α⟩ ∈ H.

• X is null if X |α⟩ = 0 for all |α⟩ ∈ H.

• Operators are commutative and associative under +: X+Y = Y +X and X+(Y +Z) =
(X + Y ) + Z.

• X |α⟩ ≡ |ξ⟩ ∈ H is dual to the state ⟨ξ| ∈ H∗. We can define an operator X† such that
⟨ξ| = ⟨α|X†, where X† is the Hermitian adjoint of X. X is said to be Hermitian if
X = X†.

• Operators are associative under · (usually omitted): (XY )Z = X(Y Z) = XY Z, but not
generally commutative: XY ̸= Y X in general.

• The Hermitian adjoint satisfies (XY )† = Y †X† and ⟨β|X |α⟩∗ = ⟨α|X† |β⟩.
We now discuss some key theorems related to Hermitian operators. The first one is the

Hermitian operators in finite-dimensional Hilbert space are always diagonalizable.

Theorem F.2.1. Spectrum Theorem
Let H finite-dimensional Hilbert space. and A : H→ H be a Hermitian operator. Then there
is a basis for H consisting entirely of eigenvectors of A.

The proof of this theorem is complicated and therefore skipped. In quantum mechanics, we
assume that the Hermitian operators in infinite-dimensional Hilbert space are diagonalizable
as well.

Theorem F.2.2. Let H finite-dimensional Hilbert space. The eigenvalues of a Hermitian
operator A : H −→ H are real and the eigenvectors of A corresponding to distinct eigenvalues
are orthogonal.

Proof. Let A : H→ H be a Hermitian operator, and let |α⟩ and |β⟩ be eigenvectors of A with
eigenvalues α and β, respectively. By definition of a Hermitian operator, we have:

A |α⟩ = α |α⟩ and ⟨β|A = β∗ ⟨β| . (F.2.2)

Taking the inner product of both sides with |α⟩, we obtain:

⟨β|A |α⟩ = β∗ ⟨β|α⟩ . (F.2.3)

On the other hand, since A |α⟩ = α |α⟩, it follows that:

⟨β|A |α⟩ = α ⟨β|α⟩ . (F.2.4)

Equating the two expressions, we get:

β∗ ⟨β|α⟩ = α ⟨β|α⟩ . (F.2.5)

Rearranging, we find:

(β∗ − α) ⟨β|α⟩ = 0 . (F.2.6)

If α = β, then α∗ − α = 0, which implies that α is real. Thus, all eigenvalues of A are
real. If α ̸= β, then ⟨β|α⟩ = 0, which shows that |α⟩ and |β⟩ are orthogonal.
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F.2.1 Matrix Representation

The completeness relation can be expressed in terms of operators. Consider a basis {|α⟩}α of
eigenvectors with corresponding eigenvalues {α}α. Then, the completeness relation is given
by: ∑

α

|α⟩ ⟨α| = I , (F.2.7)

where each projective operator is defined as Pα ≡ |α⟩ ⟨α|, satisfying:∑
α

Pα = I . (F.2.8)

For an operator X : H→ H, we can represent it as:

X = 1XI

=
∑
α,β

|α⟩ ⟨α|X |β⟩ ⟨β|

=
∑
α,β

|α⟩ ⟨β|Xαβ . (F.2.9)

Here, Xαβ = ⟨α|X |β⟩ represents the matrix elements of X in the given basis.
In matrix form, the operator X is represented as:

X =


⟨1|X|1⟩ ⟨1|X|2⟩ · · · ⟨1|X|n⟩
⟨2|X|1⟩ ⟨2|X|2⟩ · · · ⟨2|X|n⟩

...
...

. . .
...

⟨n|X|1⟩ ⟨n|X|2⟩ · · · ⟨n|X|n⟩

 . (F.2.10)

In this representation, the bra and ket vectors are expressed in column and row vector
forms as:

|α⟩ =


⟨1|α⟩
⟨2|α⟩
...

⟨n|α⟩

 , ⟨β| =
(
⟨β|1⟩ ⟨β|2⟩ · · · ⟨β|n⟩

)
. (F.2.11)

F.2.2 Physical Observables

Hermitian operators represent physical observables. If Ω denotes an observable and |ψn⟩ are
its eigenvectors with eigenvalues ωn, then:

Ω |ψn⟩ = ωn |ψn⟩ . (F.2.12)

Notice that from the previous theorem, we know that for an arbitrary state, it can be written
as:

|ψ⟩ =
∑
n

Cn |ψn⟩ , (F.2.13)

the values of |Cn|2 determine the probability of the quantum state being measured in state
|ψn⟩. Therefore, the average of many measurements of Ω is given by:

⟨ψ|Ω|ψ⟩ =
∑
n

|Cn|2ωn. (F.2.14)
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F.2.3 Dynamics

The dynamics of the quantum states are described by the time-depenent Schrodinger equation:

iℏ
∂

∂t
|ψ⟩ = Ĥ |ψ⟩ . (F.2.15)

As a consequence, since the operator is Hermitian, the probability is conserved:

d ⟨ψ|ψ⟩
dt

= 0 . (F.2.16)

The eigenstates of the Hamiltonian can be obtained from the time-independent Schrodinger
equation:

ℏ2

2m
∇2 |ψn⟩ = En |ψn⟩ . (F.2.17)

Then the time-dependent state can be obtained by the linear combination of the eigenstates:

|ψ⟩ =
∑
n

Cn e
iEnt/ℏ |ψn⟩ . (F.2.18)

F.2.4 Uncertainty Principle

Let A,B : H → H be operators. A and B are said to be compatible if their commutator is
zero and therefore can have the same eigenstates:

[A,B] ≡ AB −BA = 0 , (F.2.19)

and incompatible if their commutator is not zero and therefore can not have the same eigen-
states:

[A,B] ̸= 0 . (F.2.20)

Define a measurement error of the observable A be ∆A = A− ⟨A⟩, then the variation of A is

⟨(∆A)2⟩ = ⟨A2⟩ − ⟨A⟩2 and the standard error is σA =
√
⟨(∆A)2⟩ =

√
⟨A2⟩ − ⟨A⟩2.

Let |α⟩ = ∆A |ψ⟩ and |β⟩ = ∆B |ψ⟩. By Cauchy-Schwarz inequality, we have:

⟨(∆A)2⟩ ⟨(∆B)2⟩ = ⟨α|α⟩ ⟨β|β⟩
≥ | ⟨α|β⟩ |2 = | ⟨∆A∆B⟩ |2

=
1

4
|| ⟨[∆A,∆B]⟩2 + 1

4
| ⟨{∆A,∆B}⟩ |2

≥ 1

4
| ⟨[A,B]⟩ |2 . (F.2.21)

Therefore, two observables A and B always satisfy the uncertainty relation:

σAσB ≥
1

2
| ⟨[A,B]⟩ | . (F.2.22)
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F.3 Continuous Structures

We discuss the Hilbert space formalism of quantum mechanics so far. However, we only
discuss the Hilbert spaces which are finite-dimensional or countably infinite-dimensional. In
this section, we discuss some continuous structures important in quantum mechanics.

F.3.1 Position Operator

In quantum mechanics, the position and momentum are operators x and p with eigenstates
|x′⟩ and |p′⟩, respectively. The position and momentum operators satisfy the canonical com-
mutation relation:

[x, p] = i ℏ . (F.3.1)

Therefore, we have the Heisenberg uncertainty principle:

σxσp ≥
ℏ
2
. (F.3.2)

Since every particle is at some position x′ in the space. We can represent any quantum
state in term of |x′⟩:

|α⟩ =
∑
x′

|x′⟩ ⟨x′|α⟩ , (F.3.3)

where ⟨x′|α⟩ is called the wavefunction and | ⟨x′|α⟩ |2 is the probability of observing the
particle at the position x′.

However, the spaces are usually continuous except for some discrete spaces, such as lattices.
Therefore, we replace the summation notation with integral:

|α⟩ =
∫
space

dx′ |x′⟩ ⟨x′|α⟩ . (F.3.4)

Notice that the Hilbert space for |x′⟩ is uncountably infinite-dimensional. Therefore, if we
rewrite the a state |x′⟩ using the integral:

|x′⟩ =
∫
space

dx′′ |x′′⟩ ⟨x′′|x′⟩ , (F.3.5)

then we can see that:

⟨x′′|x′⟩ = δ(x′′ − x′) , (F.3.6)

which is called Dirac orthonormal. This tells us that the basis {|x′⟩} is not orthonormal but
Dirac orthonormal. Therefore, we can obtain the normalizabity of |α⟩ in term of its wave
function:

⟨α|α⟩ = 1 ⇐⇒
∫
space

dx′| ⟨x′|α⟩ |2 = 1 . (F.3.7)
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Remark 2. From equation F.3.6, we can immediately know the wavefunction for |x′⟩ is:

⟨x|x′⟩ = δ(x− x′) . (F.3.8)

This wavefunction is a strange one since it is non-normalizable:∫
space

dxδ(x− x′)2 =∞ . (F.3.9)

This can be explained as a result of the Heisenberg uncertainty principle since it states that
the ”perfect measurement” can not exist.

Remark 3. Although the wavefunctions of |x′⟩ are not really functions, their Dirac orthonor-
mality tells us that a wavefunction of an arbitrary quantum state ψ(x) can be obtained by
overlaying them together by integral, that is to say:

ψ(x) =

∫
space

dxA(x)δ(x− x′) . (F.3.10)

Just as the Dirac function is not a function but a generalized function that adds an additional
structure to the function space, |x′⟩ are not really vectors in a finite-dimensional or countably
infinite-dimensional Hilbert space due to its dimension but an additional structure in the
Hilbert space.

For an orthonormal eigenbasis {|ω⟩} of an operator Ω, we can represent it by the wave
function as follows:

Ω |ω⟩ = ω |ω⟩ =
∫
space

dx′ω ⟨x′|ω⟩ |x′⟩ , (F.3.11)

its expectation value is:

⟨Ω⟩ = ⟨ω|Ω|ω⟩

=

∫
space

dx′ dx′′ω ⟨x′′|x′⟩ | ⟨x′|ω⟩ |2

=

∫
space

dx′ω| ⟨x′|ω⟩ |2 . (F.3.12)

If we can find an operator Ωx acting on the wave function such that:

Ωx ⟨x′|ω⟩ = ω ⟨x′|ω⟩ , (F.3.13)

then it is equivalent to the original operator Ω since:

Ωx |ω⟩ =
∫
space

dx′Ωx ⟨x′|ω⟩ |x′⟩ =
∫
space

dx′ω ⟨x′|ω⟩ |x′⟩ . (F.3.14)

and the expectation value of Ω is:∫
space

dx′ ⟨ω|x′⟩Ωx ⟨x′|ω⟩ =
∫
space

dx′ω| ⟨x′|ω⟩ |2 . (F.3.15)

Therefore, we can represent the quantum states in terms of the wave functions and use a
corresponding operator acting on the wave functions to represent the operator acting on the
quantum states. This representation is called wave function representation.
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F.3.2 Translational Operator and Momentum Operator

The translation operator T (dx′) is defined as an operator transforming the quantum states
as follows:

T (dx′) |x′⟩ = |T (dx′)x′⟩ = |x′ + dx′⟩ . (F.3.16)

Remark 4. It is easy to check that the collection of all T (dx′) is an abelian group under the
operation ∗ defined as T (dx′) ∗ T (dx′′) = T (dx′)T (dx′′).

Remark 5. Since {|x′⟩} is uncountably infinite, we can not represent it in matrix form and
therefore:

⟨T (dx′)†x′|x′′⟩ ≠ ⟨x′|T (dx′)† |x′′⟩ . (F.3.17)

Its adjoint operator can be obtained by considering the wavefunctions:

⟨T (dx′)†x′′|x′⟩ = ⟨x′′|T (dx′)|x′⟩ = ⟨x′′|x′ + dx′⟩ = δ(x′′ − x′ − dx′) . (F.3.18)

Therefore, the adjoint operator of T (dx′) is:

T (dx′)† |x′⟩ = |x′ − dx′⟩ . (F.3.19)

Since T (dx′) form a group, we can assume

T (dx′) = 1− i k · dx′ . (F.3.20)

Now we need the lemma:

Theorem F.3.1. The commutator of x and T (dx′) is:

[x, T (dx′)] = dx′T (dx′) . (F.3.21)

Proof. Compute the commutator directly, we can obtain:

[x, T (dx′)] |x⟩ = xT (dx′) |x′⟩ − T (dx′)x |x′⟩
= x |x′ + dx′⟩ − x′T (dx′) |x′⟩
= (x′ + dx′) |x′ + dx′⟩ − x′ |x′ + dx′⟩
= dx′ |x′ + dx′⟩ = dx′T (dx′) |x′⟩ . (F.3.22)

By the assumption F.3.20 and theorem F.3.1, we have:

[x, T (dx′)] = − ix · k · dx′ + i k · dx′ · x
= dx′(1− k · dx′)
= dx′ +O(dx′2) . (F.3.23)

Drop the O(dx′2) term, we have:

xikj − kjxi = i δij , (F.3.24)
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which is naturally analog to the canonical commutation. Therefore, we naturally take:

k =
p

ℏ
. (F.3.25)

which implies the translational operator is:

T (dx′) = 1− i
p · dx′

ℏ
. (F.3.26)

Now we can consider the translational operator for ordinary length l, which is:

T (l) = T

(
l

dx′

)
=

(
1− i

p · l
(l/dx′)ℏ

)l/dx′

≈ e− i p·l/ℏ . (F.3.27)

There is another theorem that gives a similar result. We need a lemma first:

Lemma F.3.2. Let f be an analytical function. Then:

f(x− a) = e−a d
d x f(x) . (F.3.28)

Proof. View f(x− a) as a function of −a, then its Taylor expansion near 0 is:

f(x− a) =

( ∞∑
k=0

(−a)k

k!

dk

dxk

)
f(x)

= e−a d
d x f(x) . (F.3.29)

Theorem F.3.3. Let T (l) be the translational operator for ordinary length l. Then act T (l)
on the quantum state is equivalent to act e−l∂x on the wavefunction.

Proof. Consider the follows:

T (l) |α⟩ = T (l)

∫
dx′ |x′⟩ ⟨x′|α⟩

=

∫
dx′ |x′ + l⟩ ⟨x′|α⟩

=

∫
dx′ |x′ + l⟩ ⟨x′|α⟩

=

∫
dx′ |x′⟩ ⟨x′ − l|α⟩

=

∫
dx′ |x′⟩ e−l∂x′ ⟨x′|α⟩ . (F.3.30)

We know that the quantum state T (l) |α⟩ has the wavefunction e−l∂x′ ⟨x′|α⟩. Therefore,
T (l) |α⟩ can be equivalently obtained from e−l∂x′ ⟨x′|α⟩.
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Compare the results from theorem F.3.1 and theorem F.3.3, we know that the opera-
tor e− i p·l/ℏ acting on the quantum state is equivalent to the operator e−l∂x acting on wave
function.

This relation implies that the momentum operator Now we know that the momentum
operator behaves like − i ℏ∇ in the wavefunction representation.

Quantum State Representation←→Wavefunction Representation

e− i p·l/ℏ ←→ e−l∂x

p←→ − i ℏ∂x

The physical meaning of the momentum operator may be not very explicit in this form. Does
it still have the same physical meaning as in classical mechanics? We introduce the concept
of classical correspondence pronciple in the next chapter to solve this problem.
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Chapter 2

Classical Correspondence

A new theory is related to an old one in this manner. For example, we have some old theories
such as black-body radiation, atomic spectral line, and absence of motion in ether, and some
new theories such as mass-energy relation and quantum entanglement. The intersection of
the old ones and the new ones is the correspondence.

Old theories New theories
Correspondence

Figure 2.1: Concept of correspondence.

C.1 Ehrenst theorem

There are several different classical correspondences for quantum mechanics. Different in
generality. There is an important theorem for the correspondence of classical and quantum
mechanics.

Theorem C.1.1. Ehrenst theorem (for position and momentum)
For a single quantum particle in the potential V (x), we have

d ⟨x⟩
d t

= ⟨p⟩ , d ⟨p⟩
d t

= −⟨∇V (x)⟩ . (C.1.1)

17
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Proof. The proof for the position part is

d ⟨x⟩
d t

=
d

d t

∫
ψ∗xψ dx =

∫ (
∂ψ∗

∂t
xψ + ψ∗x

∂ψ

∂t

)
dx

=
1

i ℏ

∫ {
ψ∗x

(
ℏ2

2m
∇2 + V (x)

)
ψ −

(
ℏ2

2m
∇2 + V (x)

)
ψ∗xψ

}
dx

=
ℏ

2 im

∫ (
ψ∗x∇2ψ −∇2ψ∗xψ

)
dx . (C.1.2)

Use the integration by part, this can be simplified to

ℏ
2 im

∫
[∇(ψ∗x)∇ψ −∇ψ∗∇(xψ)] dx

=
ℏ

2 im

∫
[ψ∗∇x∇ψ − ψ∇ψ∗∇x] dx

=
ℏ

2 im

∫ [
ψ∗
(
∂ψ

∂x
+
∂ψ

∂y
+
∂ψ

∂z

)
− ψ

(
∂ψ∗

∂x
+
∂ψ∗

∂y
+
∂ψ∗

∂z

)]
dx

=
1

2m
(2 ⟨px⟩+ 2 ⟨py⟩+ 2 ⟨pz⟩) =

1

m
⟨p⟩ . (C.1.3)

The proof for the momentum part is

d ⟨p⟩
d t

=
d

d t

∫
ψ∗ (− i ℏ∇)ψ dx =

∫ (
∂ψ∗

∂t
(− i ℏ∇)ψ + ψ∗ (− i ℏ∇) ∂ψ

∂t

)
dx

= − i ℏ
∫ (

∂ψ∗

∂t
∇ψ + ψ∗∇∂ψ

∂t

)
dx

= −
∫ [
−∇ψ

(
ℏ2

2m
∇2 + V (x)

)
ψ∗ + ψ∗∇

(
ℏ2

2m
∇2 + V (x)

)
ψ

]
dx . (C.1.4)

Use the integration by part twice, and expanse the last term, we can obtain

−
∫

(−V (x)ψ∗∇ψ + V (x)ψ∗∇ψ + ψ∗∇V (x)ψ) dx

= −
∫
ψ∗∇V (x)ψ dx = ⟨−∇V (x)⟩ . (C.1.5)

As we know in Newtonian mechanics the momentum and position have the relation

dx

d t
=

1

m
p , (C.1.6)

d p

d t
= −∇V (x) , (C.1.7)

the Ehrenst theorem gives us the classical correspondence of the expectation values of ob-
servables. The wave functions and the operators also correspond. We start to observe this
from the more generalized version of Ehrenst theorem.
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Theorem C.1.2. Ehrenst theorem
Let A be an operator for an observable. Then

d ⟨A⟩
d t

=
1

i ℏ
⟨[A,H]⟩+

〈
∂A

∂t

〉
, (C.1.8)

where H is the Hamiltonian operator and [A,B] = AB −BA is the commutator.

Proof.

d ⟨A⟩
d t

=
d

d t

∫
ψ∗Aψ dx

=

∫
∂ψ∗

∂t
Aψ + ψ∗∂A

∂t
ψ + ψ∗A

∂ψ

∂t
dx

=

∫ (
ψ∗ 1

i ℏ
AHψ − ψ∗ 1

i ℏ
HAψ

)
dx+

〈
∂A

∂t

〉
=

1

i ℏ
⟨[A,H]⟩+

〈
∂A

∂t

〉
. (C.1.9)

In particular, if the operator A is x or p, then we obtain the relations

d ⟨x⟩
d t

=
1

i ℏ
⟨[x,H]⟩ , (C.1.10)

d ⟨p⟩
d t

=
1

i ℏ
⟨[p,H]⟩ . (C.1.11)

These relations immediately remind us of the Poisson bracket in classical mechanics. We can
construct the correspondence theory for the operators from the Poisson bracket.

C.2 Poisson Bracket

In Hamiltonian mechanics, consider two arbitrary smooth functions f and g on the phase
space with canonical coordinate (q, p), we define the Poisson bracket {−,−} be a function act
on these functions

{f, g} = ∂f

∂q

∂g

∂p
− ∂f

∂p

∂g

∂q
. (C.2.1)

Generally, we can write

d

d t
f(q, p, t) =

∂f

∂t
+
∂f

∂q

d q

d t
+
∂f

∂p

d p

d t

=
∂f

∂t
+
∂f

∂q

∂H

∂p
− ∂f

∂p

∂H

∂q

= {f,H}+ ∂f

∂t
. (C.2.2)

This is similar to the commutator relation in the previous section. Moreover, the Poisson
bracket has an algebraic structure in the following theorem.
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Theorem C.2.1. Algebraic structure for the Poisson bracket
Let f, g and h be functions on the phase space. Then

• Skew symmetry: {f, g} = −{g, f} .

• Bilinearity: {f, C1g + C2h} = C1{f, g}+ C2{f, h} .

• Decomposition: {f, gh} = {f, g}h+ g{f, h} .

• Jacobi Identity: {{f, g}, h}+ {{h, f}, g}+ {{g, h}, f} = 0 .

Notice that the commutator also has this algebraic structure. Therefore, we can expect
the correspondence relation

Quantum Mechanics ←→ Classical Mechanics

Operators on the Hilbert space ←→ Functions on the phase space

Commutator:
1

i ℏ
[−,−] ←→ Poisson bracket: {−,−}

Example C.2.1. Consider the quantum operators q2, p2 and the commutator of them.
Decompose [q2, p2] through the algebraic structure, we have

[q2, p2] = q[q, p2] + [q, p2]q

= q(p[q, p] + [q, p]p) + (p[q, p] + [q, p]p)q

= 2 i ℏqp+ 2 i ℏpq
= 2 i ℏ(qp+ pq − i ℏ)
= 4 i ℏqp+ 2ℏ2 = 4 i ℏqp+O(ℏ2) . (C.2.3)

Therefore, we have the relation

1

i ℏ
[q2, p2] = 4qp+O(ℏ) . (C.2.4)

Consider the classical correspondence for q2 and p2. The Poisson bracket for them is

{q2, p2} = d q2

d q

d p2

d p
− d p2

d q

d q2

d p
= 4qp . (C.2.5)

These results satisfy the correspondence relation under the classical limit ℏ −→ 0

1

i ℏ
[−,−]←→ {−,−}+O(ℏ) . (C.2.6)

Notice that different quantum systems can have the same classical limit due to the non-
commutativity, here is an example.

Example C.2.2. Consider functions q2p, pq2 and p. The Poisson bracket of them is given
by

{q2p, p} = {pq2, p} = ∂q2p

∂q

∂p

∂p
− ∂q2p

∂p

∂p

∂q
= 2qp . (C.2.7)
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Consider the quantum operators q2p, p. The commutator for them is

1

i ℏ
[q2p, p] = q2

1

i ℏ
[p, p]p+

1

i ℏ
[q2, p]p

=
1

i ℏ
[q2, p]p =

1

i ℏ
(q[q, p] + [q, p]q)p

= 2qp . (C.2.8)

However, for the quantum operators pq2, p, the commutator for them is

1

i ℏ
[pq2, p] = p

1

i ℏ
[q2, p] +

1

i ℏ
[p, p]q2

= p
1

i ℏ
[q2, p] = p

1

i ℏ
(q[q, p] + [q, p]q)

= 2pq = 2qp− 2 i ℏ . (C.2.9)

Under the classical limit, two quantum systems are the same. Conversely, the quantization
of the classical systems is not unique.

C.3 Hamilton-Jacobi Equation and WKB Approx-

imation

Hamilton-Jacobi equation is a bridge between quantum and classical mechanics and therefore
important for the classical correspondence principle in quantum mechanics. In this section,
we review the Hamilton-Jacobi equation and its relation to quantum mechanics and WKB
approximation.

C.3.1 Hamilton-Jacobi Equation

The classical action is a functional of the path x⃗(t) and time t, which is defined as the integral
of the Lagrangian over the time interval:

S[x⃗(t), t] =

∫ t

0
L(x⃗(t), ˙⃗x(t)) d t . (C.3.1)

Then we naturally want to ask how to consider the variation of S with respect to the path
x⃗(t). We now consider a perturbation of paths δx⃗ satisfying δx⃗(0) = 0 but δx⃗(t) is free as
figure 2.2 demonstrates. Then the action becomes:

δS[x⃗(t), t] = δ

∫ t

0
L(x⃗(t), ˙⃗x(t)) d t

=

∫ t

0

∑
i

(
∂L

∂xi
δxi +

∂L

∂ẋi
δẋi

)
d t

=

∫ t

0

∑
i

[
∂L

∂xi
δxi −

(
d

d t

∂L

∂ẋi

)
δxi

]
d t+

∑
i

∂L

∂ẋi
δxi

∣∣∣∣t
0

=

∫ t

0

∑
i

(
∂L

∂xi
− d

d t

∂L

∂ẋi

)
δxi d t+

∑
i

∂L

∂ẋi
δxi(t) =

∑
i

piδxi(t) . (C.3.2)
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δx⃗(t) is free

δx⃗(0) = 0

Figure 2.2: The perturbation δx⃗(0) = 0 but δx⃗(t) is free.

Therefore, we obtain the first Hamilton-Jacobi equation, which states that the variation of
the action with respect to xi(t) is:

δS

δxi(t)
= pi . (C.3.3)

Now we want to ask, what is the derivative of the action with respect to t, we consider the
total derivative of the action:

L =
dS

d t
=
∂S

∂t
+
∑
i

∂S

∂xi
ẋi

=
∂S

∂t
+
∑
i

piẋi . (C.3.4)

Therefore, the derivative of the action with respect to t is:

∂S

∂t
= L−

∑
i

piẋi (C.3.5)

= −H (x⃗, p⃗, t)

= −H
(
x⃗,

δS

δx⃗(t)
, t

)
. (C.3.6)

Therefore, we have the second Hamilton-Jacobi equation:

∂S

∂t
+H

(
x⃗,

δS

δx⃗(t)
, t

)
= 0 . (C.3.7)

The variation δS/δx⃗ also often be denoted by ∇S or ∂S/∂x⃗.

C.3.2 The Semi-Classical Approximation and WKB Approx-
imation

The basic concept of WKB approximation is to assume the solution of the following differential
equation:

y(n) +

n−1∑
i=1

ai(x)y
(i) = 0 (C.3.8)
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be an exponential of asymptotic series:

y ≈ exp

[
1

δ

∞∑
i=0

δiSi(x)

]
, (C.3.9)

where δ −→ 0.

The wavefunction can be rewritten as the exponential of another function S, which is
closely related to the classical action, that is, the wavefunction is:

ψ(x⃗) = eiS(x⃗)/ℏ . (C.3.10)

Remark 6. Notice that the function S here can be complex.

Substitute the wavefunction in the time-independent Schrodinger equation:

− ℏ2

2m
∇2ψ + V (x⃗)ψ = Eψ , (C.3.11)

we can obtain:

1

2m
(∇S)2 + h

2m i
∇2S = E − V . (C.3.12)

Notice that under the classical limit ℏ −→ 0, the function S becomes the classical action, which
satisfies the Hamilton-Jacobi equation:

(∇S)2 = 2m(E − V ) . (C.3.13)

In addition, add the time t in ψ and the function S, then we write:

S(x⃗, t) =
ℏ
i
lnψ(x⃗, t) . (C.3.14)

Then using the second Hamilton-Jacobi equation C.3.7, we can obtain:

∂S(x⃗, t)

∂t
= −H(x⃗,∇S, t) = ℏ

i

∂tψ(x⃗, t)

ψ(x⃗, t)
. (C.3.15)

Therefore, we obtain the Schrodinger-equation-like equation:

i ℏ
∂

∂t
ψ(x⃗, t) = H(x⃗, p⃗, t)ψ . (C.3.16)

We can quantize the position and momentum to operators, then we can obtain the Schrodinger
equation.

We can now apply the WKB approximation in a one-dimensional system, assuming that
the solution for the time-independent Schrodinger equation is eiS(x)/ℏ, where the function S
is:

S(x) =

∞∑
i=0

(
ℏ
i

)i

Si(x) = S0(x⃗) +

(
ℏ
i

)
S1(x) +

(
ℏ
i

)2

S2(x) +O(ℏ3) . (C.3.17)
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Substitute the series into equation equation C.3.12 and drop the term O(ℏ3), then:

1

2m

(
S′
0

)2
+

1

2m

(
ℏ
i

)(
(S′

0)
2 + 2S′

0S
′
1

)
+

1

2m

(
ℏ
i

)2 (
2S′

0S
′
2 + (S′

1)
2 + S′′

2

)
≈ E − V . (C.3.18)

Assume the only nonzero term is the zeroth order term, that is:

S′
0 ≈ ±

√
2m(E − V ) ≡ ±p , S0 = ±

∫ x

p(x′) dx′ (C.3.19)

Then the first order term implies:

S′
1 = −

1

2

S′′
0

S′
0

= −1

2

p′

p
. (C.3.20)

By integrating both sides, we can obtain:

S1 = ln p−1/2 + C . (C.3.21)

Therefore, the wavefunction can be approximated to the O(ℏ):

ψ(x) ≈ C1√
p
exp

[
i

ℏ

∫ x

p(x′) dx′
]
+
C2√
p
exp

[
− i

ℏ

∫ x

p(x′) dx′
]
. (C.3.22)

This approach approximates the wavefunction to the term O(ℏ) (or more accurate if needed),
this approximation is called semi-classical approximation. We can discuss more details about
the conditions of the value of p.

Classical Allowed Region

The classical allowed region is the region satisfied E > V , that is, the energy is greater than
the potential barrier. Therefore, the value of p is a real number. The wavefunction is identical
to the equation C.3.22.

Classical Forbidden Region

The classical forbidden region is a region that can not be observed in the classical system.
The energy is less than the potential barrier in this region; therefore, the value of p is a
purely imaginary number. Let p = i

√
2m(V − E), by equation C.3.22, we can obtain the

wavefunction is:

ψ(x) ≈ C ′
1√
k
exp

[
−1

ℏ

∫ x

k(x′) dx′
]
+
C ′
2√
k
exp

[
1

ℏ

∫ x

k(x′) dx′
]
. (C.3.23)
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Chapter 3

Charged Particles in
Electromagnetic Fields

E.1 Phase in Quantum Mechanics

From the Stern-Gerlach experiment, we can know that the superposition of quantum states
is the heart of quantum mechanics. Naturally, we can choose a phase of the superposition.
Then what is its significance? The core reasons are the physical phase and gauge choice.

E.1.1 Physical Phase

In classical mechanics, the electric force is generated by the potential F⃗ = −∇V , which is
invariant under the transformation V (x) 7→ V (x)+V0. Is this also true in quantum mechanics?

The dynamics of quantum mechanics is described by the Schrodinger equation H |α, t⟩ =
− i ℏ∂t |α, t⟩, which leads to

|α, t⟩ = e
− i

∫ t
t0

H(t′) d t′ |α, t0⟩ . (E.1.1)

Under the same transformation in classical mechanics, the transform is as follows:

V 7→ Ṽ = V + V0

H 7→ H̃ = H + V0

|α, t⟩ 7→ |α̃, t⟩ = e− i(t−t0)V0 |α, t⟩ . (E.1.2)

This is an example of gauge transformation in quantum mechanics. More generally, we can
consider time-dependent transformation:

V 7→ Ṽ = V + V0(t)

H 7→ H̃ = H + V0(t)

|α, t⟩ 7→ |α̃, t⟩ = e
− i

∫ t
t0

V0(t′) d t′ |α, t⟩ . (E.1.3)

These phase differences are detectable, the observables are different in different potential
fields. For example, the gravity-induced phase has been detected.

Note that the added term V0(t) is independent of the position x. Then can we generalize
this concept on the electrodynamics, which is position-relevant?

27
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E.1.2 Gauge Symmetry

We know that in classical electrodynamics, the electromagnetic fields have gauge symmetry,
but how does this property behave in quantum mechanics? We discuss what the Schrodinger
equation looks like in the magnetic field and how the gauge symmetry behaves in quantum
mechanics in this section.

Schrodinger Equation in the Magnetic Fields

Consider a particle with massm and charge q moving in the electromagnetic field, the equation
of motion is

m¨⃗x = q

[
E⃗(x(t), t) +

1

c
˙⃗x× B⃗(x(t), t)

]
−∇V (x(t)) . (E.1.4)

The Lagrangian of the particle is

L(x⃗, ˙⃗x) =
1

2
mẋ2 − qϕ(x⃗, t) + q

c
˙⃗x · A⃗(x⃗, t)− V (x⃗) . (E.1.5)

Notice that the canonical momentum and the generalized velocity have the relation

p⃗ =
∂L

∂ ˙⃗x
= m ˙⃗x− q

c
A⃗(x⃗, t) , ˙⃗x =

p⃗

m
− q

mc
A⃗(x⃗, t) . (E.1.6)

So the Hamiltonian of the particle is

H(x⃗, p⃗) =
1

2m

(
p⃗− q

c
A⃗
)2

+ qϕ(x⃗, t) + V (x⃗) . (E.1.7)

We can use the quantization rule to describe the particle quantum mechanically, that is, use
the relations

[xi, pj ] = i ℏδij , [xi, xj ] = [pi, pj ] = 0 . (E.1.8)

Replace the momentum by the momentum operator p 7→ − i ℏ∇, we have the Schrodinger
equation:

i ℏ
∂

∂t
ψ =

[
1

2m

(
p⃗− q

c
A⃗
)2

+ qϕ+ V

]
ψ

=

[
1

2m

(
p⃗2 +

q2

c2
A⃗2 − q

c
p⃗ · A⃗− q

c
A⃗ · p⃗

)
+ qϕ+ V

]
ψ (E.1.9)

Notice that as operators p⃗ · A⃗ ̸= A⃗ · p⃗, we need the following relation:

p⃗ · (A⃗ψ) = − i ℏ∇ · (A⃗ψ)
= A⃗ · (− i ℏ∇ψ)− i ℏ∇ · A⃗ψ
= A⃗ · (p⃗ψ)− i ℏ(∇ · A⃗)ψ , (E.1.10)

which implies that as operators:

p⃗ · A⃗ = A⃗ · p⃗− i ℏ∇ · A⃗ . (E.1.11)
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Utilizing eqaution E.1.11 and the gauge ∇ · A⃗ = 0, we can rewrite the equation as:

i ℏ
∂

∂t
ψ =

[
1

2m

(
p⃗2 +

q2

c2
A⃗2 − 2q

c
A⃗ · p⃗

)
+ qϕ+ V

]
ψ . (E.1.12)

This is what the Schrodinger equation looks in the magnetic field.

The probability density ρ and current J⃗ becomes:

ρ = |ψ|2 , J⃗ = ψ∗ 1

2m

(
− i ℏ∇− q

c
A⃗
)
ψ − ψ 1

2m

(
− i ℏ∇− q

c
A⃗
)
ψ∗ . (E.1.13)

Gauge Invariance

In electrodynamics, Maxwell’s equations are invariant under the gauge transformation

A⃗ 7→ A⃗′ = A⃗+∇χ , (E.1.14)

ϕ 7→ ϕ′ = ϕ− 1

c

∂χ

∂t
. (E.1.15)

Under this transformation, the Lagrangian, action, and Hamiltonian are transformed as fol-
lows:

L 7→ L′ = L+
q

c

d

d t
χ(x(t), t) , (E.1.16)

S 7→ S′ = S (invariant) , (E.1.17)

H 7→ H ′ =

[
1

2m

(
p⃗− q

c
A⃗− q

c
∇χ
)2

+ qϕ− q1
c

∂χ

∂t
+ V

]
. (E.1.18)

Consider a unitary operator ei qχ/ℏc, which satisfies

exp
(
− i

qχ

ℏc

)
p⃗ exp

(
i
qχ

ℏc

)
= exp

(
− i

qχ

ℏc

) [
p⃗ exp

(
i
qχ

ℏc

)
− exp

(
i
qχ

ℏc

)
p⃗
]
+ p⃗

= exp
(
− i

qχ

ℏc

) [
p⃗, exp

(
i
qχ

ℏc

)]
+ p⃗

= exp
(
− i

qχ

ℏc

)(
− i ℏ exp

(
i
qχ

ℏc

)
i
q∇χ
ℏc

)
+ p⃗

= exp
(
− i

qχ

ℏc

)(
exp

(
i
qχ

ℏc

) q∇χ
c

)
+ p⃗

= p⃗+
q∇χ
c

. (E.1.19)

Substitute this into the transformation of the Hamiltonian, one can represent the transfor-
mation as

H 7→ H ′ = ei qχ/ℏcH e− i qχ/ℏc (E.1.20)

Another Hamiltonian H − i ℏ∂t satisfies the transformation as well:

H − i ℏ∂t 7→ ei qχ/ℏc(H − i ℏ∂t) e− i qχ/ℏc . (E.1.21)
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Utilize this relation, one can obtain the Schrodinger equation under the transformation:

(H − i ℏ∂t)ψ = 0 7→ eui qχ/ℏc(H − i ℏ∂t) e− i qχ/ℏc ψ = 0 . (E.1.22)

Reduce the equation to the original form:

ei qχ/ℏc(H − i ℏ∂t) e− i qχ/ℏc ψ = 0

=⇒ ei qχ/ℏcH e− i qχ/ℏc ψ = ei qχ/ℏc i ℏ∂t e− i qχ/ℏc ψ

=⇒ H e− i qχ/ℏc ψ = i ℏ∂t e− i qχ/ℏc ψ (E.1.23)

Once the transformation of the Schrodinger equation is obtained, so is the solution:

ψ 7→ ψ′ = ei qχ/ℏc ψ . (E.1.24)

This transformation satisfies(
p⃗− q

c
A⃗− q

c
∇χ
)
ψ′ = − i ℏ

(
i q∇χ
ℏc

ψ′ + ei qχ/ℏc∇ψ
)
−
(q
c
A⃗+

q

c
∇χ
)
ψ′

= ei qχ/ℏc p⃗ψ − q

c
A⃗ψ′ = ei qχ/ℏc

(
p⃗− q

c
A⃗
)
ψ , (E.1.25)

Remark 7. Notice that by the gauge invariance discussed previously, the equation E.1.12 is
form invariant under the gauge transformation:

i ℏ
∂

∂t
ψ =

[
1

2m

(
p⃗2 +

q2

c2
A⃗2 − 2q

c
A⃗ · p⃗

)
+ qϕ+ V

]
ψ

7→ i ℏ
∂

∂t
ψ′ =

[
1

2m

(
p⃗2 +

q2

c2
A⃗′2 − 2q

c
A⃗′ · p⃗

)
+ qϕ′ + V

]
ψ′ . (E.1.26)

Remark 8. We derive the Schrodinger equation in the magnetic field from the classical equa-
tion of motion E.1.4. Conversely, we can derive equation E.1.4 from the ordinary Schrodinger
equation by requiring that the Schrodinger equation is invariant under the transformation
ψ 7→ ψ ei qχ/ℏc.

Under this transformation the Schrodinger equation is transformed as follows:

i ℏ
∂

∂t
ψ =

p⃗2

2m
ψ 7→

(
i ℏ
∂

∂t
− q

c

∂χ

∂t

)
ψ′ =

1

2m

(
p⃗− q

c
∇χ
)2
ψ′ . (E.1.27)

Use the gauge transformation E.1.14, we can obtain:

i ℏ
∂

∂t
ψ =

1

2m

(p⃗− qA⃗

c

)2

+ qϕ

ψ . (E.1.28)

Replace the quantum mechanical operators with classical quantities, we can reproduce the
classical equation of motion E.1.4.
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E.2 Charged Particle in the Magnetic Field

We have derived the quantum mechanical equation for non-relativistic and spinless charged
particles in the electromagnetic fields. Now consider a charged particle moving in a constant
magnetic field:

Ax = −1

2
By , Ay =

1

2
Bx , Az = 0 . (E.2.1)

The Hamiltonian of the particle is:

H =
1

2m

[(
px +

1

2c
Byq

)2

+

(
py −

1

2c
Bxq

)2

+ p2z

]
(E.2.2)

=
1

2m

[(
p2x + p2y

)
+
B2q2

4c2
(x2 + y2) +

Bq

c
(pxy − pyx) + p2z

]
. (E.2.3)

Define the following variables:

p⃗x,y = px + py (motion in x, y-plane) ,
Bq

2mc
= ωL (Oscillation Frequency) ,

pxy − pyx = lz (Angular momentum in z- direction) . (E.2.4)

The Hamiltonian can be rewritten in the following form, each term leads to a corresponding
physical phenomenon:

H =
p⃗2x,y
2m

+
1

2
mω2

L(x
2 + y2)︸ ︷︷ ︸

Zeeman effect

+ ωLlz︸︷︷︸
Landau levels

+
p2z
2m︸︷︷︸

Free motion

. (E.2.5)

E.2.1 Zeeman Effect

We now move our focus on the electron in the hydrogen atom, that is, the charge q = −e.
Consider the hydrogen atom is in a weak magnetic field, that is, O(B2) can be dropped.

Then the Hamiltonian becomes

H =
p⃗2x,y
2m

+ ωLlz + V (r) , (E.2.6)

here V (r) = −e2/r is the electric potential due to the nuclear, only dependent on the distance
to the nuclear r.

The algebra for the angular momentum is

[li, lj ] = i ϵijklk , (E.2.7)

here l1 = lx, l2 = ly, l3 = lz. Using this algebraic structure, we can obtain the following
commutation relation

[li, l
2] = 0 , [H, l2] = 0 , [H, li] = 0 . (E.2.8)
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Therefore, in an ordinary hydrogen atom (without the magnetic field), the set {H, lz, l2}
forms a complete set of commuting observables. The eigenstates of these operators are
{|En, l,m⟩}n,l,m, which have the eigenvalues for each operator:

H |En, l,m⟩ = En |En, l,m⟩ , (E.2.9)

l2 |En, l,m⟩ = l(l + 1)ℏ2 |En, l,m⟩ , (E.2.10)

lz |En, l,m⟩ = mℏ |En, l,m⟩ . (E.2.11)

Due to the spherical symmetry of the atomes, the corresponding wave functions can be ex-
pressed as two parts which are dependent on n, l and l,m respectively, which can be expressed
as follows:

ψnlm = Rnl(r)Y
m
l (θ, ϕ) , (E.2.12)

where Y m
l (θ, ϕ) is the spherical harmonic function.

Similarly, in the hydrogen atom in the magnetic field, the complete set of commuting
observables is: {

H =
p⃗2x,y
2m

+ ωLlz + V (r) , l , l2
}
. (E.2.13)

But the eigenstates and their eigenvalues now are:

H |En, l,m⟩ = (En + ωLmℏ) |En, l,m⟩ , (E.2.14)

l2 |En, l,m⟩ = l(l + 1)ℏ2 |En, l,m⟩ , (E.2.15)

lz |En, l,m⟩ = mℏ |En, l,m⟩ . (E.2.16)

The degenerate spectra of the atom will split into 2l + 1 levels. For example, if the energy
difference of 3p and 3s orbitals is ∆E, consider the Zeeman effect, the spectra split into
∆E − ωL, ∆E, ∆E + ωL.

E.2.2 Landau Levels

The Zeeman effect only considers the weak magnetic field and drops the O(B2) term. Now
we include the O(B2) term.

Similarly, the wave function can be expressed as several different parts. Notice that the
system does not have spherical symmetry but cylindrical symmetry. Hence, the wave function
can be expressed as three parts in cylindrical coordinates:

ψ(ρ, ϕ, z) = χ(ρ) eimϕ ei kz , (E.2.17)

where m = 0,±1,±2, · · · and k is the conserved momentum in the z-direction.

We now first solve the solution of the equation, and express the operators in spherical
coordinates, we can obtain a one-variable equation:[

− ℏ2

2µ

(
∂2

∂ρ2
+

1

ρ

∂

∂ρ
− m2

ρ2

)
+

1

2
µω2

Lρ
2

]
χ(ρ) =

[
E −mℏωL −

ℏ2k2

2µ

]
χ(ρ) , (E.2.18)
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where the last term is the total energy minus the energy from the terms ωLlz and p2z/(2m),
we now denote it by E′. Rewrite it into a homogeneous equation form:(

∂2

∂ρ2
+

1

ρ

∂

∂ρ
− m2

ρ2
−
µ2ω2

L

ℏ2
ρ2 +

2µE′

ℏ2

)
χ(ρ) = 0 . (E.2.19)

Define α ≡ µωL/ℏ, E′ = ℏωLϵ, and ξ ≡ αρ then it becomes:(
d2

d ξ2
+

1

ξ

d

d ξ
− m2

ξ2
− ξ2 + 2ξ

)
ξ(ξ) = 0 . (E.2.20)

Consider the boundary condition ξ −→ 0, the equation becomes:(
d2

d ξ2
+

1

ξ

d

d ξ
− m2

ξ2

)
ξ(ξ) = 0 , (E.2.21)

which has the solution χ = ξβ, where β = |m|.
For the boundary condition ξ −→∞, the equation becomes:(

d2

d ξ2
− ξ2

)
ξ(ξ) = 0 , (E.2.22)

which has the solution χ = e±ξ2/2.
With the ansatz χ(ξ) = ξβ e±ξ2/2 u(ξ). Substitute it in the equation, we obtain:

u′′ +

(
2β − 1

ξ
− 2ξ

)
u′ + [2ϵ− 2(β + 1)]u = 0 . (E.2.23)

Now define ζ ≡ ξ2 and therefore du/d ξ = 2ζ du/d ζ, substitute them in the equation, we
can obtain:

ζu′′ + (β + 1− ζ)u′ −
(
β + 1

2
− ϵ

2

)(
β + 1

2
− ϵ

2

)
u = 0 , (E.2.24)

which is a hypergeometric equation:

ζf ′′ + (γ − ζ)f ′ − αf = 0 , (E.2.25)

with α =
(
β+1
2 −

ϵ
2

)
and γ = β+1. The solution is an unusual special function hypergeometric

function F (α, β, ζ), which is defined as

F (α, γ, ζ) =

∞∑
n=0

(α)n
n!(γ)n

ζn , (E.2.26)

where

(α)n
(γ)n

=
α

γ

α+ 1

γ + 1
· · · α+ b

γ + b
. (E.2.27)

Therefore, we ultimately obtain:

χ(ρ) = e−(αρ)2/2(αρ)βF (α, γ, α2ρ2) . (E.2.28)
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Consider the boundary condition ρ −→ ∞, then χ(ρ) diverges unless F (α, β, α2ρ2) is finite.
Then we require (α)n = 0. Therefore, α = nρ ∈ N. Hence, ϵ = 2nρ + |m|+ 1.

We ultimately obtain the spectrum and the wave function:

E′
nρm = ℏωL(2nρ + |m|+ 1) , (E.2.29)

ψnρmk(ρ, ϕ, z) = eimϕ ei kz e−(αρ)2/2(αρ)|m|F (α, γ, α2ρ2) . (E.2.30)

The total energy is:

E = E′
nρm +mℏωL +

ℏ2k2

2µ

= ℏωL(2nρ + |m|+ 1 +m) +
ℏ2k2

2µ
. (E.2.31)

Notice that E can be rewritten as:

E = µzBz +
ℏ2k2

2µ
, (E.2.32)

where µz = − eℏ
2µc(2nρ + |m|+ 1 +m).

Therefore, the term µz is actually the quantum-induced dipole moment for free electrons
in the magnetic field.

E.2.3 Superconductivity (Phenomenological Description)

Superconductivity is a phenomenon of zero resistance in the conductor, that is, there is no
potential barrier in the conductor and the electrons in the superconductor are free. In this
section, we discuss some phenomena originating from this property.

Meissner Effect

Meissner effect is a phenomenon that which the magnetic field vanishes in the superconductor
as figure 3.1. This phenomenon can not be explained by classical electromagnetism. We
discuss the quantum mechanics description of this phenomenon in this section.

Figure 3.1: Meissner effect, the magnetic field is expelled outside the superconductor.
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Quantum mechanics provides a description of the charge carriers in the superconductor
as:

i ℏ
∂

∂t
ψ =

1

2µ

[(
− i ℏ∇− q

c
A⃗
)2

+ qϕ

]
ψ , (E.2.33)

take ψ =
√
ρ ei θ, where θ = S(t)/ℏ. Then since − i ℏ∇ 7→ (− i ℏ∇− qA⃗/c), we have

µv⃗ = ℏ∇θ − qA⃗

c
. (E.2.34)

Then we have the continuity equation:

∂ρ

∂t
+∇ · (ρv⃗) = ∂ρ

∂t
+∇ · j⃗ = 0 , (E.2.35)

j⃗ =
ρ

µ

(
ℏ∇θ − q

c
A⃗
)
. (E.2.36)

Notice that since the second equation is the probability current, it gives rise to a quantum
current density:

J⃗ =
qρ

µ

(
ℏ∇θ − q

c
A⃗
)
. (E.2.37)

We can perform the gauge transformation to make it become:

J⃗ = −q
2ρ

µc
A⃗ , (E.2.38)

This is called London equation.
Another equation is the incompressible-fluid-like equation, known as the Bernoulli equa-

tion:

µ

2
v⃗2 + qϕ+ ℏ

∂θ

∂t
− ℏ2

2µ

1
√
ρ
∇2√ρ︸ ︷︷ ︸

quantum effects

= 0 . (E.2.39)

This equation states that the quantum current density behaves like the incompressible fluid.

Remark 9. Take the gradient of the equation, we can obtain:

0 =
µ

2
∇v⃗2 − qE⃗ + ℏ

∂

∂t
(∇θ)− ℏ2

2µ
∇
(

1
√
ρ
∇2√ρ

)
= µ[v⃗ × (∇× v⃗) + (v⃗ · ∇)v⃗]− qE⃗ +

∂

∂t

(
µv⃗ +

qA⃗

c

)
− ℏ2

2µ
∇
(

1
√
ρ
∇2√ρ

)
. (E.2.40)

Utilize the relations:

∇× v⃗ = − q

µc
∇× A⃗ = − q

µc
B⃗ , (E.2.41)

d v⃗

d t
=
∂v⃗

∂t
+ vx

∂v⃗

∂x
+ vy

∂v⃗

∂y
+ vz

∂v⃗

∂z
= (v⃗ · ∇)v⃗ . (E.2.42)



36 CHAPTER 3. CHARGED PARTICLES IN ELECTROMAGNETIC FIELDS

We can obtain the equation of motion:

µ
d v⃗

d t
= q(E⃗ +

1

c
v⃗ × B⃗) +

ℏ2

2µ

(
1
√
ρ
∇2√ρ

)
. (E.2.43)

This tells us that the last term can be interpreted as the quantum-induced potential. We can
denote it as

−Vquantum =
ℏ2

2µ

(
1
√
ρ
∇2√ρ

)
. (E.2.44)

Back to the quantum current density, employ the Maxwell’s equation:

∇× B⃗ =
4π

c
J⃗ +

1

c

∂E⃗

∂t
, (E.2.45)

assume the electric field is steady, we can obtain:

∇× (∇× B⃗) =
4π

c
∇× J⃗

= −4π

c

q2ρ

µc
∇× A⃗

= −4πq2ρ

µc2
B⃗ . (E.2.46)

Apply the Maxwell’s equation and the vector identity:

∇ · B⃗ = 0 , (E.2.47)

∇× (∇× B⃗) = ∇(∇ · B⃗)−∇2B⃗ . (E.2.48)

Define λ =
√

4πρq2/(µc2). We ultimately obtain the equation:

∇2B⃗ = λ2B⃗ . (E.2.49)

Notice that λ ≈ 103m. Therefore, according to the differential equation, we know that the
magnetic field exponential decay in the material rapidly:

Bi ∝ e−λx . (E.2.50)

This is the Meissner effect.

Flux Quantization

Define the magnetic flux for a surface S as

Φ =

∫
S
B⃗ · d s⃗ . (E.2.51)

Due to the Meissner effect, we can know that:

ℏ∇θ = qA⃗

c
. (E.2.52)
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Consider the integral over a curve. It is easy to obtain the relation:∮
∂S

ℏ∇θ · d l⃗ = q

c

∮
∂S
A⃗ · d l⃗

=
q

c

∫
S
B⃗ · d s⃗ = q

c
Φ . (E.2.53)

Since
√
ρ ei θ should be invariant when the curve integral goes back to the same point, that is,

θ ∈ R/ ∼, where ∼ is an equivalent relation defined by a ∼ b if and only if 0 ∼ 2π. Therefore,
the integral becomes: ∮

∂S
∇θ · d l⃗ = 0 ∈ R/ ∼ . (E.2.54)

If we view
∮
∂S∇θ · d l⃗ on R, then∮

∂S
∇θ · d l⃗ = 2πn, n ∈ Z . (E.2.55)

Therefore, we obtain the magnetic flux satisfies:

Φ =
2nℏπc
q
≡ nΦ0 , (E.2.56)

where Φ0 is the flux quantum. In superconductors, the copper pairs have charges q = −2e,
then the flux quantum is:

Φ0 =
πℏc
e
≈ 2× 10−7Gauss · cm2 . (E.2.57)

E.2.4 Aharonov–Bohm effect

Aharonov–Bohm effect is a quantum mechanics phenomenon stating a charged particle is
affected by an electromagnetic field even though the particle is in the region without any
electromagnetic field.

Consider a device that particles are emitted at the A side and collected at the B side, the
particles can pass through two paths I and II as figure 3.2 demonstrates.

I B⃗

A B
II

Figure 3.2: Device for the Aharonov–Bohm effect experiment.



38 CHAPTER 3. CHARGED PARTICLES IN ELECTROMAGNETIC FIELDS

The wave function at the B side can be written as path integral form:

ψ(x⃗) =

∫
I
D[x⃗(t)] eiS[x⃗(t),t]/ℏ+

∫
II
D[x⃗(t)] eiS[x⃗(t),t]/ℏ . (E.2.58)

The Lagrangian and the action are:

L(x⃗(t), ˙⃗x(t)) = L0(x⃗(t), ˙⃗x(t)) +
qA⃗ · ˙⃗x(t)

c
, (E.2.59)

S(x⃗(t), t) =

∫ t

t0

L0(x⃗(t
′), ˙⃗x(t′)) d t′ +

∫ t

t0

qA⃗ · ˙⃗x(t′)
c

d t′

= S0[x⃗(t), t] +
q

c

∫
x⃗([t0,t])

A⃗ · d x⃗′ . (E.2.60)

Therefore, the wavefunction becomes:

ψ(x⃗) =

(∫
I
D[x⃗(t)] eiS0[x⃗(t),t]/ℏ

)
× exp

[
i q

ℏc

∫
x⃗∈I

A⃗ · d x⃗′
]

+

(∫
II
D[x⃗(t)] eiS0[x⃗(t),t]/ℏ

)
× exp

[
i q

ℏc

∫
x⃗∈II

A⃗ · d x⃗′
]
. (E.2.61)

Define the path integral terms in the equation E.2.61 be R1 and R2 and the exponential terms
in the equation E.2.61 be ei θ1 and ei θ2 . The wavefunction can be rewritten as:

ψ = R1 e
i θ1 +R2 e

i θ2

= R1 e
i θ1

(
1 +

R2

R1
ei(θ2−θ1)

)
. (E.2.62)

Notice the definition of θ1 and θ2, we can view it as a closed curve integral as follows:

θ2 − θ1 =
q

ℏc

∫
x⃗∈I

A⃗ · d x⃗′ − q

ℏc

∫
x⃗∈II

A⃗ · d x⃗′

=
q

ℏc

∮
A⃗ · d x⃗′ = q

ℏc

∫
B⃗ · d x⃗′ = 2π

Φ

Φ0
. (E.2.63)

Therefore, we can see that the phase factor of the wave function can be affected by the
magnetic field. This phenomenon is called Aharonov–Bohm effect, which is a purely quantum
mechanical phenomenon.

In addition, there is a similar phenomenon called Aharonov–Casher effect stating that the
magnetic dipole moment µ displays a similar effect in the presence of an electric field, that
is, the figure 3.2 becomes figure 3.3.

The Lagrangian can be derived from the Dirac equation, which is:

L = L0 − (E⃗ × µ⃗) · ˙⃗x . (E.2.64)

By a similar trick, we can obtain the same form of the wavefunction with the only difference
being qA⃗/c 7→ −E⃗ × µ⃗. Therefore, the phase factor difference becomes:

θ2 − θ1 = −
1

ℏ

∫
x⃗∈I

(E⃗ × µ⃗) · d x⃗′ + 1

ℏ

∫
x⃗∈II

(E⃗ × µ⃗) · d x⃗′
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I E⃗

A B
II

Figure 3.3: Device for the Aharonov–Casher effect experiment.

= −1

ℏ

∮
(E⃗ × µ⃗) · d x⃗′ = −1

ℏ

∮
∇× (E⃗ × µ⃗) · d s⃗′

= −1

ℏ

∮
(µ⃗ · ∇)E⃗ · d s⃗′ + 1

ℏ

∮
(∇ · E⃗)µ⃗ · d s⃗′

= −1

ℏ

∮
(µ⃗ · ∇)E⃗ · d s⃗′ + 1

ℏ

∮
ρµ⃗ · d s⃗′ . (E.2.65)
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Chapter 4

Electron Spin and Angular
Momentum

Spin is a purely quantum phenomenon proposed to solve the problems of the atomic spectrum.
The first problem is sodium atomic spectrum, usually, sodium atom spectrum has a yellow
line with wavelength about 5893 Å. However, under high resolution, it actually consists of 2
lines with wavelength 5896, Å and 5890, Å. Another one is anomalous Zeeman effect. The
normal Zeeman effect states that the spectrum line splits into 2l + 1 lines in the magnetic
field. However, sometimes the spectrum line splits into an even number of lines, this is called
the anomalous Zeeman effect. We need to introduce the concept of spin to explain these
phenomena. The spin has the properties that the spin angular momentum of magnitude
ℏ/2 and projection on the z-direction can take only two values ±ℏ/2. The magnetic dipole
moment is eℏ/(4mc).

S.1 Pauli Theory

The original mechanical model of spin describes that the spin is due to the rotation of elec-
trons. However, it requires the velocity of the surface of the spin to be about 137c, which
makes no sense. Now, we use the Pauli theory to describe the spin.

The Pauli theory states that the spin S and the spin magnetic moment µ are new intrinsic
properties of electrons. Assume that the spin obeys the angular momentum algebra

[Si, Sj ] = i ℏ
3∑

k=1

ϵijkSk . (S.1.1)

Instead of assuming that they are mechanical, we assume that, like other quantum observables,
they can be described as operators and quantum states.

The simplest spin structure is in two-dimensional Hilbert space:

H = { |↑⟩ , |↓⟩ } , (S.1.2)

which satisfies Sz |↑⟩ = ℏ/2, Sz |↓⟩ = −ℏ/2. We can represent it as matrices by introducing
the Pauli matrices, which are defined by:

σx =

(
0 1
1 0

)
, σy =

(
0 − i
i 0

)
, σx =

(
1 0
0 −1

)
. (S.1.3)

41



42 CHAPTER 4. ELECTRON SPIN AND ANGULAR MOMENTUM

Alternatively, we can write three Pauli matrices as one matrix:

σi =

(
δi3 δi1 − i δi2

δi1 + i δi2 −δi3

)
(S.1.4)

These Hermitian matrices follow similar algebra as the spin operators, the commutator
and the anti-commutator for the Pauli matrices are:

[σi, σj ] = 2 i

3∑
k=1

ϵijkσk , {σi, σj} = 2δijI . (S.1.5)

Combine the commutator and the anti-commutator together, we can obtain the product of
two Pauli matrices:

σiσj =
1

2
[σi, σj ] +

1

2
{σi, σj}

= i

3∑
k=1

ϵijkσk + δijI . (S.1.6)

Consider two vectors a⃗ = (ax, ay, az) and b⃗ = (vx, vy, vz), then

3∑
i=1

3∑
j=1

(aiσi)(bjσj) =

3∑
i=1

3∑
j=1

(
i

3∑
k=1

ϵijkaibjσk + δijaibjI

)
. (S.1.7)

We can rewrite this relationship in outer product and inner product form:

(⃗a · σ⃗)(⃗b · σ⃗) = i(⃗a× b⃗) · σ⃗ + (⃗a · b⃗)I . (S.1.8)

The spin operations and the quantum states can be represented as:

Si =
ℏ
2
σi , |↑⟩ =

(
1
0

)
, |↓⟩ =

(
0
1

)
. (S.1.9)

S.2 Intrinsic Magnetic Dipole Moment

The algebra of the angular momentum and the spin are very similar. The magnetic dipole
moments from these properties are similar as well. However, their original properties clearly
differ. We will discuss the difference between these two properties.

S.2.1 Magnetic Moment from Angular Momentum

We now are interested in the interaction between the magnetic field and the electrons. Assume
the magnetic field is uniform, then the Hamiltonian is:

H =
1

2µ

(
p⃗2 +

eA⃗

c

)2

=
p⃗2

2µ
+
eA⃗ · p⃗
µc

+
e2A⃗2

2µc2
. (S.2.1)
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We assume the uniform magnetic field here; therefore

A⃗ =
1

2
B⃗ × r⃗ . (S.2.2)

The Hamiltonian becomes:

H =
p⃗2

2µ
+
eA⃗ · p⃗
µc

+
e2A⃗2

2µc2

=
p⃗2

2µ
+
ep⃗ · (B⃗ × r⃗)

2µc
+
e2A⃗2

2µc2

=
p⃗2

2µ
+
eB⃗ · (r⃗ × p⃗)

2µc
+
e2A⃗2

2µc2

=
p⃗2

2µ
+
eB⃗ · l⃗
2µc

+
e2A⃗2

2µc2
=
p⃗2

2µ
+
e2A⃗2

2µc2
− µ⃗l · B⃗ , (S.2.3)

where µ⃗l = e⃗l/(2µc) is the magnetic moment due to the orbital angular momentum. Notice
that this is not intrinsic since it originates from the orbital angular momentum l⃗.

S.2.2 Magnetic Moment from Orbital Spin

The spin differs from the angular momentum, the magnetic moment due to the spin is a kind
of intrinsic property. We start our discussion with the free spin particle.

Since the wave functions for the spin particles are ψ(r⃗, Sz) = (ψ+(r⃗), ψ−(r⃗0))
T , the mo-

mentum operator in the spinor space is:

σ⃗· = σxpx + σypy + σzpz , (S.2.4)

which can be imaged as the projection of the momentum operator on each of the spin states.
Therefore, the Hamiltonian for the spin particle in the magnetic field is:

H =
[σ⃗ · (p⃗+ eA⃗/c)]2

2µ
. (S.2.5)

Utilize the relationship:

(⃗a · σ⃗)(⃗b · σ⃗) = i(⃗a× b⃗) · σ⃗ + (⃗a · b⃗) . (S.2.6)

The Hamiltonian becomes:

H =
i(p⃗+ eA⃗/c)× (p⃗+ eA⃗/c) · σ⃗

2µ
+

(p⃗+ eA⃗/c)2

2µ

=
i e

2µc
(p⃗× A⃗+ A⃗× p⃗) · σ⃗ +

(p⃗+ eA⃗/c)2

2µ
. (S.2.7)

Notice that the term p⃗× A⃗+ A⃗× p⃗ here is an operator; therefore, we need the relation:[
p⃗× (A⃗ψ) + A⃗× (p⃗ψ)

]
= − i ℏ

[
∇× (A⃗ψ) + A⃗× (∇ψ)

]
= − i ℏ

[(
∇× A⃗

)
ψ + (∇ψ)× A⃗+ A⃗× (∇ψ)

]
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= − i ℏ
(
∇× A⃗

)
ψ = − i ℏB⃗ψ . (S.2.8)

This relationship means that as an operator p⃗ × A⃗ + A⃗ × p⃗ = − i ℏB⃗, then the Hamiltonian
becomes:

H =
eℏ
2µc

σ⃗ · B⃗ +
(p⃗+ eA⃗/c)2

2µ

=
e

µc
S⃗ · B⃗ +

(p⃗+ eA⃗/c)2

2µ

= −µ⃗s · B⃗ +
(p⃗+ eA⃗/c)2

2µ
, (S.2.9)

where −µ⃗s = [eℏ/(2µc)]σ⃗ = [e/(µc)]S⃗ is the magnetic moment due to the electron spin, which
is an intrinsic property.

In summary, we have:

µl
l
=

e

2µc
= gl

e

2µc
, (S.2.10)

µs
S

=
e

µc
= gs

e

2µc
, (S.2.11)

where gl = 1 and gs = 2 are called g-factor, which is an important factor in quantum
electrodynamics.

S.3 Total Angular Momentum

We now obtain the Hamiltonian including the spin and angular momentum:

H =
1

2µ

(
p⃗+

eA⃗

c

)2

− µ⃗s · B⃗

=
1

2µ

(
p⃗2 +

e2A⃗2

c2

)
− µ⃗l · B⃗ − µ⃗s · B⃗ . (S.3.1)

However, this is not the complete Hamiltonian. There is another interaction called Thomas
coupling, which considers the interaction between the spin and the angular momentum and
is a relativistic phenomenon. The coupling Hamiltonian is expressed as:

Hcoupling =
1

2µ2c2
1

r

dV

d r
S⃗ · l⃗ ≡ ξ(r)S⃗ · l⃗ . (S.3.2)

This coupling Hamiltonian can affect the spin and angular momentum states, in other words,
the angular momentum and the spin can affect each other through this coupling. Therefore,
the coupling Hamiltonian does not commute with S⃗ and l⃗:

[S⃗, S⃗ · l⃗] ̸= 0 , [⃗l, S⃗ · l⃗] ̸= 0 . (S.3.3)

Now, since the spin and the angular momentum can affect each other, we combine them
together and define it as

j⃗ ≡ S⃗ + l⃗ , (S.3.4)
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which is called total angular momentum. It is easy to check that the total angular momentum
follows the same algebra as the spin and the angular momentum:

[jα, jβ] = i
∑
γ

ϵαβγjγ , [j2, jα] = 0 . (S.3.5)

In addition, the commutator of the total angular momentum and the coupling term is:

[jα, S⃗ · l⃗] = [Sα + lα, S⃗ · l⃗]

=
∑
β

([Sα, Sβlβ] + [lα, Sβlβ])

=
∑
β

([Sα, Sβ]lβ + [lα, lβ]Sβ)

=
∑
β

∑
γ

i ϵαβγ (Sγlβ + lγSβ)

=
∑
β

∑
γ

i ϵαβγ (Sγlβ + lγSβ) = 0 . (S.3.6)

The zero comes from the opposite sign of permutation. Alternatively, we can write it in the
vector form:

[⃗j, S⃗ · l⃗] = 0 . (S.3.7)

By a similar trick, we can obtain:

[j2, S⃗ · l⃗] = 0 . (S.3.8)

Therefore, the complete set of commuting observables is:

{ H, l2, j2, jz } . (S.3.9)

S.4 Spin-Orbit Coupling

S.5 Applications
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